Impact of phonon scattering in Si/GaAs/InGaAs nanowires and FinFets: a NEGF perspective
نویسندگان
چکیده
This paper reviews our previous theoretical studies and gives further insight into phonon scattering in 3D small nanotransistors using non-equilibrium Green function methodology. The focus is on very small gate-all-around nanowires with Si, GaAs or InGaAs cores. We have calculated phonon-limited mobility and transfer characteristics for a variety of cross-sections at low and high drain bias. The nanowire cross-sectional area is shown to have a significant impact on the phonon-limited mobility and on the current reduction. In a study of narrow Si nanowires we have examined the spatially resolved power dissipation and the validity of Joule’s law. Our results show that only a fraction of the power is dissipated inside the drain region even for a relatively large simulated length extension (approximately 30nm). When considering large source regions in the simulation domain, at low gate bias, a slight cooling of the source is observed. We have also studied the impact of B Antonio Martinez [email protected] Anna Price [email protected] Raul Valin [email protected] Manuel Aldegunde [email protected] John Barker [email protected] 1 College of Engineering, Swansea University, Engineering East, Fabian Way, Crymlyn Burroughs, Swansea SA1 8EN, UK 2 School of Engineering, University of Warwick, Coventry CV4 7AL, UK 3 College of Science and Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK the real part of phonon scattering self-energy on a narrow nanowire transistor. This real part is usually neglected in nanotransistor simulation, whereas we compute its impact on current–voltage characteristic and mobility. At low gate bias, the imaginary part strongly underestimated the current and the mobility by 50%. At high gate bias, the two mobilities are similar and the effect on the current is negligible.
منابع مشابه
Scattering in Si-Nanowires - Where Does it Matter?
Electron transport is computed in 3nm Si nanowires subject to incoherent scattering from phonons. The electronic structure of the nanowire is represented in an atomistic sp3d5s* tight binding basis. Phonon modes are computed in an atomistic valence force field rather than a continuum deformation potential. Atomistic transport and incoherent scattering are coupled through the non-equilibrium Gre...
متن کاملAtomistic Full-Band Simulations of Si Nanowire Transistors: Effects of Electron-Phonon Scattering
An atomistic full-band quantum transport simulator has been developed to study threedimensional Si nanowire field-effect transistors (FETs) in the presence of electron-phonon scattering. The Non-equilibrium Green’s Function (NEGF) formalism is solved in a nearest-neighbor sp3d5s∗ tight-binding basis. The scattering self-energies are derived in the self-consistent Born approximation to inelastic...
متن کاملImpact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths ...
متن کاملCarrier dynamics in p-type InGaAs/GaAs quantum dots
In this study we investigate the carrier relaxation dynamics in p-type doped InGaAs/GaAs quantum dots using time-integrated and time-resolved photoluminescence. The experiment shows that while a strong phonon bottleneck is observed in the undoped samples, with a 680 ps rise time of the photoluminescence intensity, the intra-dot relaxation time (31 ps) of the p-type doped samples is reduced sign...
متن کاملPhonon Engineering in Isotopically Disordered Silicon Nanowires.
The introduction of stable isotopes in the fabrication of semiconductor nanowires provides an additional degree of freedom to manipulate their basic properties, design an entirely new class of devices, and highlight subtle but important nanoscale and quantum phenomena. With this perspective, we report on phonon engineering in metal-catalyzed silicon nanowires with tailor-made isotopic compositi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016